загрузка...
Характеристики форми розподілу - Статистика PDF Друк e-mail
Статистика - Статистика - Герасименко С. С., Головач А. В., Єріна А. М.

5.4. Характеристики форми розподілу

Аналіз закономірностей розподілу передбачає оцінювання ступеня однорідності сукупності, асиметрії та ексцесу розподілу.

Однорідність сукупності — передумова використання інших ста­тистичних методів (середніх величин, регресійного аналізу тощо). Однорідними вважаються такі сукупності, елементи яких мають спільні властивості і належать до одного типу, класу. При цьому однорідність означає не повну тотожність властивостей елементів, а лише наявність у них спільного в істотному, головному.

В однорідних сукупностях розподіли одновершинні (одномодальні). Багатовершинність свідчить про неоднорідний склад сукупності, про різнотиповість окремих складових. У такому разі необхідно перегрупувати дані, виокремити однорідні групи. Критерієм однорідності сукупності вважається квадратичний коефіцієнт варіації, який завдяки властивостям  в симетричному розподілі становить . Згідно з цим критерієм сукупність домогосподарств за рівнем забезпеченості житлом практично однорідна ().

З-поміж одновершинних розподілів є симетричні та асиметричні (скошені), гостро- та плосковершинні. У симетричному розподілі асиметричному — вершина розподілу зміщена. Напрям асиметрії протилежний напряму зміщення вершини. Якщо вершина зміщена ліворуч, маємо правосторонню асиметрію, і навпаки. Зазначимо, що асиметрія виникає внаслідок обмеженої варіації в одному напрямі або під впливом домінуючої причини розвитку, яка призводить до зміщення центра розподілу. Ступінь асиметрії різний — від помірного до значного. рівновіддалені від центра значення ознаки мають однакові частоти, в

Як уже зазначалося, у симетричному розподілі характеристики центра — середня, мода, медіана — мають однакові значення, в асиметричному між ними існують певні розбіжності. У разі правосторонньої асиметрії , а в разі лівосторонньої, навпаки, . Чим більша асиметрія, тим більше відхилення (). Очевидно, найпростішою мірою асиметрії є відносне відхилення , яке характеризує напрям і міру скошеності в середині розподілу; при правосторонній асиметрії , при лівосторонній — .

Теоретично коефіцієнт асиметрії не має меж, проте на практиці його значення не буває надто великим і в помірно скісних розподілах не перевищує одиниці. Так, за даними ряду розподілу (див. табл. 5.4) середній рівень забезпеченості населення житлом становить 9 м 2 , мода дорівнює 8,1, . Міра скошеності  свідчить про помірну правосторонню асиметрію розподілу. Такого самого висновку можна дійти на основі співвідношення середнього квадратичного та середнього лінійного відхилень: .

Іншою властивістю одновершинних розподілів є ступінь зосередженості елементів сукупності навколо центра розподілу. Цю властивість називають ексцесом розподілу.

Асиметрія та ексцес — дві пов’язані з варіацією властивості форми розподілу. Комплексне їх оцінювання виконується на базі центральних моментів розподілу . Алгебраїчно центральний момент розподілу — це середня арифметична k -го ступеня відхилення індивідуальних значень ознаки від середньої:

.

Очевидно, що момент 2-го порядку є дисперсією, яка характеризує варіацію. Моменти 3-го і 4-го порядків характеризують відповідно асиметрію та ексцес. У симетричному розподілі . Чим більша скошеність ряду, тим більше значення . Для того щоб характеристика скошеності не залежала від масштабу вимірювання ознаки, для порівняння ступеня асиметрії різних розподілів використовується стандартизований момент , який на відміну від коефіцієнта скошеності залежить від крайніх значень ознаки. При правосторонній асиметрії коефіцієнт , при лівосторонній . Звідси правостороння асиметрія називається додатною, а лівостороння — від’ємною. Уважається, що при  асиметрія низька, якщо  не перевищує 0,5 — середня, при  — висока.

Для вимірювання ексцесу використовується стандартизований момент 4-го порядку . У симетричному, близькому до нормального розподілі . Очевидно, при гостровершинному розподілі , при плосковершинному .

Аналіз закономірностей розподілу можна поглибити, описати його певною функцією.

Не менш важливими у статистичному аналізі є характеристика нерівномірності розподілу певної ознаки між окремими складовими сукупності, а також оцінка концентрації значень ознаки в окремих її частинах (наприклад, розподіл майна чи доходів між окремими групами населення, кількості зайнятих між окремими галузями промисловості, площі сільськогосподарських угідь між окремими агрогосподарствами).

Так, наведені в табл. 5.8 дані про розподіл промислових підприємств регіону за вартістю основних виробничих фондів і за обсягами спожитої електроенергії свідчать про нерівномірне споживання електроенергії. До першої групи належить 20% підприємств, а частка спожитої електроенергії становить 4%. Натомість шоста група містить 3% підприємств, які споживають 46% електроенергії. На відхиленнях часток двох розподілів — за кількістю елементів сукупності d j і обсягом значень ознаки D j — ґрунтується оцінювання концентрації.

Таблиця 5.8

ДО РОЗРАХУНКУ КОЕФІЦІЄНТА КОНЦЕНТРАЦІЇ

Вартість основних
виробничих фондів, грн.

У % до підсумку

Модуль
відхилення часток

Кількість
підприємств
d j

Спожито
електроенергії
D j

До 5

20

4

0,16

5 — 10

38

5

0,33

10 — 20

22

8

0,14

20 — 50

13

12

0,01

50 — 100

4

25

0,21

100 і більше

3

46

0,43

Разом

100

100

1,28

Якщо розподіл значень ознаки в сукупності рівномірний, то частки однакові — , відхилення часток свідчать про певну концентрацію. Верхня межа суми відхилень , а тому коефіцієнт концентрації обчислюється як півсума модулів відхилень:

.

Значення коефіцієнта коливаються в межах від нуля (рівномірний розподіл) до одиниці (повна концентрація). Чим більший ступінь концентрації, тим більше значення коефіцієнта K . У нашому прикладі K = 1,28 : 2 = 0,64, що свідчить про високий ступінь концентрації споживання електроенергії у промисловості регіону.

Коефіцієнти концентрації широко використовуються в регіональному аналізі для оцінювання рівномірності територіального розподілу виробничих потужностей, фінансових ресурсів тощо. За кожним регіоном визначається також коефіцієнт локалізації

,

який характеризує співвідношення часток.

За даними табл. 5.9 коефіцієнти локалізації свідчать про нерів­номірність купівлі (продажу) на душу населення і певною мірою про варіацію життєвого рівня населення різних регіонів.

Таблиця 5.9

КОЕФІЦІЄНТИ ТЕРИТОРІАЛЬНОЇ ЛОКАЛІЗАЦІЇ

Регіон

У % до підсумку

Коефіцієнти
локалізації L j , %

Чисельність
населення d j

Обсяг
товарообороту D j

А

30

34

113

В

50

42

84

С

20

24

120

Разом

100

100

*

Порівняння структур на основі відхилень часток доцільне в рядах з нерівними інтервалами, а надто в атрибутивних рядах.

За аналогією з коефіцієнтом концентрації обчислюється коефіцієнт подібності (схожості) структур двох сукупностей:

.

Якщо структури однакові, Р = 1; якщо абсолютно протилежні, Р = 0. Чим більше схожі структури, тим більше значення Р . За наведеними у табл. 5.10 даними про галузеву структуру зайнятості населення у двох країнах коефіцієнт подібності структур становить:

,

тобто розподіл зайнятих за галузями економіки відхиляється в середньому на 18 п. п.

Таблиця 5.10

ГАЛУЗЕВА СТРУКТУРА ЗАЙНЯТОСТІ НАСЕЛЕННЯ

Країна

Структура зайнятих, %

Сільське
господарство

Промисловість
та будівництво

Сфера послуг

А

36

24

40

В

25

42

33

Структура будь-якої статистичної сукупності динамічна. Змінюються склад і технічний рівень виробничих фондів, вікова й професійна структура робітників, склад і якість залучених до виробництва природних ресурсів, асортимент і якість продукції, що виробляється, структура споживчого бюджету тощо. Зміна часток окремих складових сукупності свідчить про структурні зрушення. Так, за даними табл. 5.11 структура спожитого в регіоні палива (у перерахунку на умовне) змінилася: зменшились частки газу та мазуту, зросли частки вугілля та інших видів палива. Інтенсивність структурних зрушень оцінюється за допомогою середнього лінійного  або середнього квадратичного  відхилень часток:

;

,

де d j 0 та d j 1 — частки відповідно базисного та поточного періоду; m — число складових сукупності.

Таблиця 5.11

СТРУКТУРА ТА СТРУКТУРНІ ЗРУШЕННЯ
СПОЖИВАННЯ ПАЛИВА ПО РОКАХ

Вид
палива

1995 р.,
d 0

2000 р.,
d 1

Відхилення часток,
d 1 d 0

Модулі
відхилень,

Квадрати
відхилень,

Вугілля

29

42

13

13

169

Газ

23

16

– 7

7

49

Мазут

45

36

– 9

9

81

Інші види

3

6

+ 3

3

9

Разом

100

100

0

32

308

Лінійний коефіцієнт структурних зрушень становить , тобто частки окремих видів палива змінилися в середньому на 8 п. п. Завдяки своїм математичним властивостям квадратичний коефіцієнт структурних зрушень дещо більший —  п. п.

 
загрузка...