загрузка...
загрузка...
Характеристики центра розподілу - Статистика PDF Друк e-mail
Статистика - Статистика - Герасименко С. С., Головач А. В., Єріна А. М.

5.2. Характеристики центра розподілу

Центром тяжіння будь-якої статистичної сукупності є типовий рівень ознаки, узагальнююча характеристика всього розмаїття її індивідуальних значень. Такою характеристикою є середня величина . За даними ряду розподілу середня обчислюється як ариф­метична зважена; вагами є частоти f j або частки d j :

,    ,

де j — номер групи; m — число груп.

В інтервальних рядах, припускаючи рівномірний розподіл елементів сукупності в межах j -го інтервалу, як варіанту  використовують середину інтервалу. При цьому ширину відкритого інтервалу умовно вважають такою самою, як сусіднього закритого інтервалу.

Дані для розрахунку середнього рівня в інтервальному ряду розподілу наведено в табл. 5.4. Згідно з розрахунками, у середньо-
му на одного члена домогосподарства припадає  = 1800 : 200 =
= 9 м 2 житлової площі. Це типовий рівень забезпеченості населення житлом.

Таблиця 5.4

РОЗПОДІЛ ДОМОГОСПОДАРСТВ МІСТА ЗА РІВНЕМ
ЗАБЕЗПЕЧЕНОСТІ ЖИТЛОМ

Житлова площа на одного члена домогосподарства, м 2

Кількість домо-
господарств f j

x j

x j f j

Кумулятивна
частка

До 5

17

4

68

17

5 — 7

39

6

234

56

7 — 9

51

8

408

107

9 — 11

42

10

420

149

11 — 13

29

12

348

178

13 — 15

15

14

210

193

15 і більше

7

16

112

200

Разом

200

´

1800

´

Окрім типового рівня важливе значення має домінанта, тобто найбільш поширене значення ознаки. Таке значення називають модою (Мо). У дискретному ряду моду визначають безпосередньо за найбільшою частотою (часткою). Наприклад, якщо депозитна ставка у восьми комерційних банків — 12% річних, а в двох — 10%, то модальною є ставка 12%.

В інтервальному ряду за тим самим принципом визначається модальний інтервал, а в разі потреби конкретне модальне значення в середині інтервалу обчислюється за інтерполяційною формулою

,

де  та h — відповідно нижня межа та ширина модального інтервалу, , ,  — частоти (частки) відповідно модального, передмодального та післямодального інтервалів.

За даними табл. 5.4 модальним є інтервал 7 — 9, що має найбільшу частоту ; ширина модального інтервалу h = 2; нижня межа х 0 = 7; передмодальна частота = 39, післямодальна — = 42. За такого співвідношення частот модальне значення забезпеченості населення житлом:

= 8,1 м 2 .

Для моди як домінанти число відхилень ( х – Мо) мінімальне. Оскільки мода не залежить від крайніх значень ознаки, то її до-
цільно використовувати тоді, коли ряд розподілу має невизначені межі.

Характеристикою центра розподілу вважається також медіана (Ме) — значення ознаки, яке припадає на середину впорядкованого ряду, поділяє його навпіл — на дві рівні за обсягом частини. Визначаючи медіану, використовують кумулятивні частоти  або частки . У дискретному ряду медіаною буде значення ознаки, кумулятивна частота якого перевищує половину обсягу сукупності, тобто  (для кумулятивної частки ).

В інтервальному ряду за цим принципом визначають медіанний інтервал, а значення медіани в середині інтервалу, як і значення моди, обчислюють за інтерполяційною формулою:

,

де x 0 та h — відповідно нижня межа та ширина медіанного інтервалу; f me — частота медіанного інтервалу;  — кумулятивна частота передмедіанного інтервалу.

За даними табл. 5.4 половина обсягу сукупності  припадає на інтервал 7 — 9 з частотою = 51; передмедіанна кумулятивна частота = 56. Отже, медіана забезпеченості населення житлом:

м 2 .

У симетричному розподілі всі три зазначені характеристики центра розподілу однакові: , у помірно асиметричному відстань медіани до середньої втричі менша за відстань середньої до моди, тобто . Саме таке співвідношення характеристик центра розподілу в розглянутому прикладі:

3 (9 – 8,7) = 9 – 8,1.

Медіана, як і мода, не залежить від крайніх значень ознаки; сума модулів відхилень варіант від медіани мінімальна, тобто вона має властивість лінійного мінімуму:

.

Цю властивість медіани можна використати при проектуванні розміщення зупинок міського транспорту, заготівельних пунктів тощо.

Окрім моди і медіани, в аналізі закономірностей розподілу використовуються також квартилі та децилі. Квартилі — це варіанти, які поділяють обсяги сукупності на чотири рівні частини, децилі — на десять рівних частин. Ці характеристики визначаються на основі кумулятивних частот (часток) за аналогією з медіаною, яка є другим квартилем або п’ятим децилем.

У ряду розподілу (див. табл. 5.4) перший квартиль становить 6,7 м 2 , перший дециль — 5,2 м 2 , дев’ятий — 13,3 м 2 :

;

;

.

Отже, у 25% сімей забезпеченість житлом не перевищує 6,7 м 2 , серед 10% малозабезпечених найвищий рівень становить 5,2 м 2 , а серед 10% найбільш забезпечених нижня межа — 13,3 м 2 .

 

Бібліотека онлайн Lection.com.ua створена для студентів та учнів, які прагнуть вчитися і пізнавати нове. Наша онлайн бібліотека підручників має близько 25 книг, ми намагаємося оновлювати нашу базу підручників кожен місяць. Сподіваємося наш сайт вам подобається. З повагою адміністрація.