загрузка...
Середні величини - Статистика PDF Друк e-mail
Статистика - Статистика - Герасименко С. С., Головач А. В., Єріна А. М.

4.4. Середні величини

Середня величина є узагальнюючою мірою ознаки, що варіює, у статистичній сукупності. Показник у формі середньої характеризує рівень ознаки в розрахунку на одиницю сукупності. Як уже зазначалося, значення ознаки j -го елемента поєднує в собі як спільні для всієї сукупності типові риси, так і притаманні лише цьому елементу індивідуальні особливості. Абстрагуючись від індивідуальних особливостей окремих елементів, можна виявити те загальне, типове, що властиве всій сукупності.

Саме в середній взаємно компенсуються індивідуальні відмінності елементів та узагальнюються типові риси. Типовість середньої  пов’язана з однорідністю сукупності. Середня характеризуватиме типовий рівень лише за умови, що сукупність якісно однорідна. У неоднорідній сукупності, за влучним висловом П. Самуельсона, осереднюються «тигри та кицьки», що лише створює ілюзію «благоденствія» і не віддзеркалює реалій.

Взаємозв’язок індивідуальних значень ознаки та середньої — це діалектична єдність загального і окремого. Замінюючи множину індивідуальних значень, середня не змінює визначальної властивості сукупності — загального обсягу явища. Зв’язок визначальної властивості з елементами сукупності описується функцією f ( x 1 , x 2 , ... x n ), яка виражає певну математичну дію над емпіричними значеннями ознаки (підсумовування, множення, степенювання, коренювання) і визначає вид середньої. Так, у разі підсумовування значень ознаки визначальну властивість забезпечує середня арифметична, при множенні — середня геометрична і т. д.

Отже, при обчиᑁленні середніх у соціально-економічних дослідженнях необхідно чітко усвідомити визначальну властивість сукупності та логіко-математичну суть — логічну формулу — по­казника. Наприклад, логічна формула середнього вкладу в банк:

.

Чисельник логічної формули середньої являє собою обсяг значень (визначальну властивість) ознаки, що варіює, а знаменник — обсяг сукупності. Як правило, визначальна властивість — це реальна абсолютна чи відносна величина, яка має самостійне значення в аналізі. У кожному конкретному випадку для реалізації логічної формули використовується певний вид середньої, зокрема:

а) середня арифметична;

б) середня гармонічна;

в) середня геометрична;

г) середня квадратична і т. д.

Залежно від характеру первинної інформації середня будь-якого виду може бути простою чи зваженою. Позначається середня символом  (риска над символом означає осереднення індивідуальних значень) і вимірюється в тих самих одиницях, що й ознака.

Середня арифметична

Оскільки для більшості соціально-економічних явищ характерна адитивність обсягів (виробництво цукру, витрати палива тощо), то найпоширенішою є арифметична середня, яка обчислюється діленням загального обсягу значень ознаки на обсяг сукупності. За первинними, незгрупованими даними обчислюєть­ся середня арифметична проста :

Наприклад, за місяць страхова компанія виплатила страхове відшкодування за п’ять ушкоджених об’єктів на суму, тис. грн.: 18, 27, 22, 30, 23. Середня сума виплати страхового відшкодування, тис. грн.:

За формулою простої арифметичної обчислюються середні у динамічному ряду. Якщо в січні агрофірма продала молокозаводу 315, у лютому — 305, а в березні — 340 т молока, то середньомісячний продаж молока, т: (315 + 305 + 340) : 3 = 320.

Моментні показники замінюються середніми як півсума значень на початок і кінець періоду. Якщо моментів більш ніж два, а інтервали часу між ними рівні, то в чисельнику до півсуми крайніх значень додають усі проміжні, а знаменником є число інтервалів, яке на одиницю менше від числа значень ознаки. Таку формулу називають середньою хронологічною :

Наприклад, на фірмі залишки обігових коштів на початок кожного місяця І кварталу становили, млн грн.: січень — 70, лютий — 82, березень — 77, квітень — 80. Середньомісячний залишок обігових коштів, млн грн.:

У великих за обсягом сукупностях окремі значення ознаки (варіанти) можуть повторюватись. У такому разі їх можна об’єднати в групи ( j = 1, 2, ..., m ), а обсяг значень ознаки визначити як суму добутків варіант х j на відповідні їм частоти f j , тобто як . Такий процес множення у статистиці називають зважуванням , а число елементів сукупності з однаковими варіантами — вагами . Сама назва «ваги» відбиває факт різновагомості окремих варіант. Значення ознаки осереднюються за формулою середньої арифметичної зваженої :

Вагами можуть бути частоти або частки (відносні величини структури), іноді інші величини (абсолютні показники). Припустимо, у фірмі працює 20 налагоджувачів аудіо- та відеоапаратури, з них три мають 4-й розряд, дев’ять — 5-й, вісім — 6-й. Середній тарифний розряд

Середня не збігається з жодним значенням ознаки, але це типовий рівень кваліфікації налагоджувачів фірми.

Формально між середньою арифметичною простою і середньою арифметичною зваженою немає принципових відмінностей. Адже багаторазове ( f раз) підсумовування значень однієї варіанти замінюється множенням варіант х на вагу f . Проте функціонально середня зважена більш навантажена, оскільки враховує поширеність, повторюваність кожної варіанти і певною мірою відображує склад сукупності. Значення середньої зваженої залежить не лише від значень варіант, а й від структури сукупності. Чим більшу вагу мають малі значення ознаки, тим менша середня, і навпаки. Наприклад, незважаючи на той факт, що в двох регіонах мешкають люди різного віку, у тому регіоні, де більше дітей, середній вік населення буде менший. На цю властивість середніх слід зважати при використанні їх у порівняльному аналізі сукупностей, склад яких істотно різний. У таких випадках, аби елімінувати (усунути) вплив структури сукупності на середню, вдаються до пошуку стандартизованих ваг.

У структурованій сукупності при розрахунку середньої зваженої варіантами можуть бути як окремі значення ознаки, так і групові середні , кожна з яких має відповідну вагу у вигляді групових частот f j :

Обчислену так середню на відміну від групових називають загальною .

Як приклад використаємо групові середні альтернативної ознаки, яка набуває взаємовиключних значень 1 або 0. Відповідні цим значенням частоти f 1 та f 0 . Очевидно, середня такої ознаки є часткою d 1 :

Так, за даними перепису населення в регіоні проживало 5,2 млн осіб, із них у містах — 3,5, у сільській місцевості — 1,7. Частка осіб працездатного віку відповідно становила 0,60 та 0,48.

Середня частка населення працездатного віку в регіоні є арифметичною зваженою з групових часток:

Середня арифметична має певні властивості, які розкривають її суть.

1. Алгебраїчна сума відхилень окремих варіант ознаки від середньої дорівнює нулю:

тобто в середній взаємно компенсуються додатні та від’ємні відхилення окремих варіант.

2. Сума квадратів відхилень окремих варіант ознаки від серед­ньої менша, ніж від будь-якої іншої величини:

3. Якщо всі варіанти збільшити (зменшити) на одну й ту саму величину А або в А раз, то й середня зміниться аналогічно.

Ця властивість найвиразніше ілюструється на прикладі ознак порядкової (рангової) шкали, для якої використовуються різні варіанти оцифрування. Так, окремим пунктам 3-бальної шкали можна надати значень 1, 2, 3 або –1, 0, 1. Очевидно, розраховані для цих варіант оцифрування середньозважений та середній центрований бали відрізнятимуться на величину А = 2. Так, за даними табл. 4.2 оцінимо ставлення населення до смертної кари.

Таблиця 4.2

СТАВЛЕННЯ НАСЕЛЕННЯ ДО СМЕРТНОЇ КАРИ

Варіанти
відповідей

Число
реcпондентів

Ранги

R

R 0

Категорично проти

21

1

–1

Не визначився

32

2

0

Повністю підтримую

47

3

1

Разом

100

×

×

Середньозважений бал становить 2,26, а середній центрований — 0,26:

;

.

Аналітичні можливості центрованого середнього балу ширші, ніж середньозваженого. Центрований бал може бути додатною чи від’ємною величиною. Знак свідчить про позитивну чи негативну оцінку явища. За допомогою центрованого балу можна порівняти оцінки різних явищ незалежно від розмірності шкали. Для такого порівняння можна скористатися формулою переходу від середньозваженого до центрованого балу:

4. Значення середньої залежить не від абсолютних значень ваг, а від пропорцій між ними. При пропорційній зміні всіх ваг середня не зміниться. Згідно з цією властивістю замість абсолютних ваг — частот f j — можна використати відносні ваги у вигляді часток  або процентів 100 d j :

.

Наприклад, на акції трьох різних компаній очікується щорічний прибуток, %: 15, 22, 18. За умови, що інвестор розподілив свої внески між акціями цих компаній у пропорції 30, 20 та 50%, очікуваний прибуток від такого портфеля акцій

Середня гармонічна

При розрахунку середньої з обернених показників використовують середню гармонічну. Припустимо, що придбано товару в двох продавців на одну й ту саму суму — на 1 грн., але за різною ціною: по 3 грн. за 1 кг у першого продавця і по 2 грн. — у другого. Як визначити середню ціну покупки? Середня арифметична (3 + 2) : 2 = 2,5 грн. за 1 кг нереальна, оскільки за такою ціною на
2 грн. можна придбати 2 : 2,5 = 0,8 кг товару. Насправді придбано товару в першого продавця (1 : 3) = 0,33 кг, у другого — (1 : 2) =
= 0,50 кг, тобто разом 0,33 + 0,50 = 0,83 кг, а середня ціна становить 2 : 0,83 = 2,4 грн.

Описаний порядок розрахунку називають середньою гармоніч­ною простою . У нашому прикладі

За умови, що в першого продавця придбано товару на 150 грн., а в другого — на 300 грн., середня ціна 1 кг, грн.:

Цей розрахунок зроблено за формулою середньої гармонічної зваженої :

,

де Z j = x j f j — обсяг значень ознаки (у нашому прикладі — вартість).

У разі, коли осереднювана ознака є відношенням між логічно пов’язаними величинами (наприклад, відносна величина інтенсивності, структури тощо), постає питання про вибір виду середньої. Основою вибору є  логічна формула показника. Так, рентабельність реалізації обчислюється відношенням:

Нехай рентабельність реалізації двох видів продукції малого підприємства становить, %: виробу А — 12, виробу В — 7. Прибуток від реалізації цих виробів дорівнює відповідно 240 і 210 тис. грн. Спроба визначити середню рентабельність як арифметичну не відповідає логічній формулі, така середня позбавлена реального економічного змісту. Для того щоб зберегти зміст, треба передусім визначити обсяг реалізації  кожного виду продукції:

У цьому разі розрахунок середнього рівня рентабельності обох видів продукції відповідає формулі середньої гармонічної:

Отже, формула середньої — це лише математична модель логічної формули показника. Основний методологічний принцип вибору виду середньої — забезпечити логіко-змістовну суть показника. Формально цей принцип можна записати так:

Показники

Прямі

Обернені

Первинні

Проста арифметична

Проста гармонічна

Похідні

Зважена

Зважена гармонічна

Розрахувати середню можна і в тому разі, коли окремі значення варіант не реєструються, а відомі лише підсумки. Так, не підраховуються витрати палива на кожну кіловат-годину електроенергії, урожайність на кожному окремому гектарі посівної площі тої чи іншої сільськогосподарської культури і т. ін.

Середня геометрична

Якщо визначальна властивість сукупності формується як добуток індивідуальних значень ознаки, використовується середня геометрична:

де П — символ добутку; x і — відносні величини динаміки, виражені кратним відношенням j -го значення показника до поперед­нього ( j – 1)-го.

Наприклад, внаслідок інфляції споживчі ціни за три роки зросли в 2,7 раза, в тому числі за перший рік у 1,8 раза, за другий — в 1,2, за третій — в 1,25 раза. Як визначити середньорічний темп зростання цін? Середня арифметична (1,8 + 1,2 + 1,25) : 3 = 1,416 не забезпечує визначальної властивості: за три роки за цією середньою ціни зросли б у 1,416 · 1,416 · 1,416 = 2,84, а не в 2,7 раза. Визначальна властивість

забезпечується лише геометричною середньою:

Коли часові інтервали не однакові, розрахунок виконують за формулою середньої геометричної зваженої :

,

де n j — часовий інтервал, , m — кількість інтервалів.

Головною сферою застосування середньої квадратичної є вимірювання варіації (див. підрозд. 5.3).


 
загрузка...